3,398 research outputs found

    Appearance of Gauge Fields and Forces beyond the adiabatic approximation

    Full text link
    We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic regime. In particular, we extend the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described by matrix valued quantum Hamiltonians. The results are illustrated by several physical relevant examples

    Semiclassical Dynamics of Dirac particles interacting with a Static Gravitational Field

    Full text link
    The semiclassical limit for Dirac particles interacting with a static gravitational field is investigated. A Foldy-Wouthuysen transformation which diagonalizes at the semiclassical order the Dirac equation for an arbitrary static spacetime metric is realized. In this representation the Hamiltonian provides for a coupling between spin and gravity through the torsion of the gravitational field. In the specific case of a symmetric gravitational field we retrieve the Hamiltonian previously found by other authors. But our formalism provides for another effect, namely, the spin hall effect, which was not predicted before in this context

    Genomic insights into the evolutionary origin of Myxozoa within Cnidaria

    Get PDF
    The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell–cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content

    Berry Curvature in Graphene: A New Approach

    Full text link
    In the present paper we have directly computed the Berry curvature terms relevant for Graphene in the presence of an \textit{inhomogeneous} lattice distortion. We have employed the generalized Foldy Wouthuysen framework, developed by some of us \cite{ber0,ber1,ber2}. We show that a non-constant lattice distortion leads to a valley-orbit coupling which is responsible to a valley-Hall effect. This is similar to the valley-Hall effect induced by an electric field proposed in \cite{niu2} and is the analogue of the spin-Hall effect in semiconductors \cite{MURAKAMI, SINOVA}. Our general expressions for Berry curvature, for the special case of homogeneous distortion, reduce to the previously obtained results \cite{niu2}. We also discuss the Berry phase in the quantization of cyclotron motion.Comment: Slightly modified version, to appear in EPJ

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded

    Z Boson Pair-Production at LEP

    Get PDF
    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured
    • 

    corecore